
‹#›

Carol S. Woodward

Lawrence Livermore National Laboratory !
P. O. Box 808!

Livermore, CA 94551!
This work was performed under the auspices of the U.S. Department

of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

LLNL-PRES-641695

SUNDIALS: Suite of Nonlinear and
Differential/Algebraic Equation Solvers

2

§  SUNDIALS Overview
§  ODE integration

•  CVODE
•  ARKode

§  DAE integration
•  IDA

§  Sensitivity Analysis
§  Nonlinear Systems

•  KINSOL
•  Fixed point solver

§  SUNDIALS: usage, applications, and availability

Outline

3

SUite of Nonlinear and
DIfferential-ALgebraic Solvers

§  Suite of time integrators and nonlinear solvers

•  ODE and DAE time integrators with forward and adjoint sensitivity
capabilities, Newton-Krylov nonlinear solver

•  Written in C with interfaces to Fortran and Matlab

•  Designed to be incorporated into existing codes

•  Modular implementation: users can supply own data structures

-  Linear solvers / preconditioners

- Vector structures – core data structure for all the codes

- Supplied with serial and MPI parallel structures

§  Freely available, released under BSD license

https://computation.llnl.gov/casc/sundials/main.html

4

LLNL has a strong history of nonlinear
solver and time integration research

SUNDIALS package evolved from innovation in methods and
software
§  Newton solvers evolved from the first Newton-Krylov

method and code for PDEs
§  ODE codes from odepack (> 200K downloads)
§  DAE codes from DASSL

2009

5

SUNDIALS offers Newton solvers, time
integration, and sensitivity solvers

  CVODE: implicit ODE solver, y’ = f(y, t)
— Variable-order, variable step BDF (stiff) or implicit Adams (nonstiff)
— Nonlinear systems solved by Newton or functional iteration
— Linear systems by direct (dense or band) or iterative solvers

  IDA: implicit DAE solver, F(t, y, y’) = 0
— Variable-order, variable step BDF
— Nonlinear system solved by Newton iteration
— Linear systems by direct (dense or band) or iterative solvers

  CVODES and IDAS: sensitivity-capable (forward & adjoint)

  Adaptive time step and order selection minimize local truncation error

  KINSOL: Newton solver, F(u) = 0
—  Inexact and Modified (with dense solve) Newton
— Linear systems by iterative or dense direct solvers

  Iterative linear Krylov solvers: GMRES, BiCGStab, TFQMR

6

§  Variable order and variable step size Linear Multistep Methods

§  Adams-Moulton (nonstiff); K1 = 1, K2 = k, k = 1,…,12
§  Backward Differentiation Formulas [BDF] (stiff); K1 = k, K2 = 0, k = 1,…,5
§  Rootfinding capability - finds roots of user-defined functions, gi(t,y)
§  The stiff solvers execute a predictor-corrector scheme:

CVODE solves

Explicit predictor to give yn(0)

Implicit corrector with yn(0) as
initial iterate

7

Convergence and errors are measured
against user-specified tolerances

§  An absolute tolerance is specified for each solution component, ATOLi

§  A relative tolerance is specified for all solution components, RTOL

§  Norm calculations are weighted by:

§  Bound time integration error with:

 The 1/6 factor tries to account for estimation errors

8

Time steps are chosen to minimize the
local truncation error

§  Time steps are chosen by:
•  Estimate the error: E(Δt) = C(yn - yn(0))
- Accept step if ||E(Δt)||WRMS < 1
- Reject step otherwise

•  Estimate error at the next step, Δt’, as

•  Choose next step so that ||E(Δt’)|| WRMS < 1
§  Choose method order by:

•  Estimate error for next higher and lower orders
•  Choose the order that gives the largest time step meeting the

error condition

9

Nonlinear systems at each time step will
require nonlinear solves

§  Use predicted value as the initial iterate for the nonlinear solver
§  Nonstiff systems: Functional iteration

§  Stiff systems: Newton iteration

ODE

DAE

10

CVODE offers Newton, Newton-Krylov and
function iteration as nonlinear solvers

§  Non-stiff systems can use function iteration, or a fixed point solver

§  Stiff systems generally require a Newton nonlinear solver

•  SUNDIALS provides dense solvers or hooks to LAPACK

- Can reuse Jacobian over multiple steps -> modified Newton

•  Newton-Krylov solvers only require matrix-vector products

- Approximations to the matrix-vector product are used,

- Matrix entries need never be formed

11

We are adding Runge-Kutta (RK) ODE time
integrators to SUNDIALS via ARKode

§  RK methods are multistage: allow high order accuracy without long
step history (enabling spatial adaptivity)

§  Implicit RK methods require multiple nonlinear solves per time step
§  Additive RK methods apply a pair of explicit (ERK) and implicit

(DIRK) methods to a split system, allowing accurate and stable
approximations for multi-rate problems.

§  Can decompose the system into “fast” and “slow” components to be
treated with DIRK and ERK solvers

§  ARKode provides 3rd to 5th order ARK, 2nd to 5th order DIRK and 2nd
to 6th order ERK methods; also supports user-supplied methods.

§  Applies advanced error estimators, adaptive time stepping, Newton
and fixed-point iterative solvers

§  ARKode will be released with SUNDIALS later this year

http://faculty.smu.edu/reynolds/arkode

12

ARKode solves

§  Variable step size additive Runge-Kutta Methods:

§  ERK methods use AI=0; DIRK methods use AE=0,
§  , i = 1,…,s are the inner stage solutions,
§  is the time-evolved solution, and
§  is the embedded solution (used for error estimation),
§  M may be the identity (ODEs) or a non-singular mass matrix (FEM).

13

Initial value problems (IVPs) come in the
form of ODEs and DAEs

§  The general form of an IVP is given by

00)(
0),,(

xtx
xxtF
=

=

  If is invertible, we solve for to obtain an ordinary
differential equation (ODE), but this is not always the best
approach

  Else, the IVP is a differential algebraic equation (DAE)

  A DAE has differentiation index i if i is the minimal number of
analytical differentiations needed to extract an explicit ODE

xF ∂∂ / x

14

IDA solves F(t, y, y’) = 0

§  C rewrite of DASPK [Brown, Hindmarsh, Petzold]
§  Variable order / variable coefficient form of BDF
§  Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2

DAEs
§  Optional routine solves for consistent values of y0 and y0’

•  Semi-explicit index-1 DAEs, differential components known,
algebraic unknown OR all of y0’ specified, y0 unknown

§  Rootfinding capability - finds roots of user-defined functions, gi(t,y,y’)
§  Nonlinear systems solved by Newton-Krylov method

§  Optional constraints: yi > 0, yi < 0, yi ≥ 0, yi ≤ 0

15

Sensitivity Analysis

§  Sensitivity Analysis (SA) is the study of how the variation in the output
of a model (numerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation in inputs.

§  Applications:
•  Model evaluation (most and/or least influential parameters), Model

reduction, Data assimilation, Uncertainty quantification,
Optimization (parameter estimation, design optimization, optimal
control, …)

§  Approaches:
•  Forward sensitivity analysis
•  Adjoint sensitivity analysis

16

Sensitivity Analysis Approaches

Computational cost:
(1+Np)Nx increases with Np

⎩
⎨
⎧

=

=

)()0(
0),,,(

0 pxx
ptxxF 

p
ii

pixix Ni
dpdxs
FsFsF

i ,,1,
)0(

0

0

…
 =

⎩
⎨
⎧

=

=++

px gsg
dp
dg

pxtg

+=

),,(

()TT
pxpp

T

xFdtFg
dp
dG

dtpxtgpxG

00
**

0

)(

),,(),(

∫

∫

−−=

=

λλ

⎪⎩

⎪
⎨
⎧

==

−=−ʹ′

TtxF
gFF

px

xxx

at...
)(

*

**





λ

λλ

Parameter dependent system

 FSA

ASA

Computational cost:

(1+Ng)Nx increases with Ng

17

Adjoint Sensitivity Analysis
Implementation

§  Solution of the forward problem is required for the adjoint problem à
need predictable and compact storage of solution values for the
solution of the adjoint system

§  Cubic Hermite or variable-degree polynomial interpolation
§  Simulations are reproducible from each checkpoint
§  Force Jacobian evaluation at checkpoints to avoid storing it
§  Store solution and first derivative
§  Computational cost: 2 forward and 1 backward integrations

t0 tf
ck0 ck1 ck2 …

Checkpointing

18

KINSOL solves F(u) = 0

§  C rewrite of Fortran NKSOL (Brown and Saad)
§  Inexact Newton solver: solves J Δun = -F(un) approximately
§  Modified Newton option (with direct solves) – this freezes the

Newton matrix over a number of iterations
§  Krylov solver: scaled preconditioned GMRES, TFQMR, Bi-CGStab

•  Optional restarts for GMRES
•  Preconditioning on the right: (J P-1)(Ps) = -F

§  Direct solvers: dense and band (serial & special structure)
§  Optional constraints: ui > 0, ui < 0, ui ≥ 0 or ui ≤ 0
§  Can scale equations and/or unknowns
§  Backtracking and line search options for robustness
§  Dynamic linear tolerance selection

19

Fixed point and Picard iteration will be
added to KINSOL in the next release

§  Define an iterative scheme to solve F(h) = h - G(h) = 0 as,

§  Picard iteration is a fixed point method formed from writing F as the
difference of a linear, Lu, and a nonlinear, N(u), operator

§  Fixed point iteration has a global but linear convergence theory
§  Requires G to be a contraction 1,)()(<−≤− γγ yxyGxG

end
).h(GhSet

)h(F until 0,1,...,k For
.h Initialize

k1k

k

0

=

<=
+

τ

)()()();()(11 uGuFLuuNLuNLuuF ≡−=−= −−

)()(11 kkkk uGuFLuu =−≈ −+

Like Newton with L
approximating J

KINSOL will have both Picard and fixed point iterations with acceleration

20

SUNDIALS provides many options for
linear solvers

§  Iterative Krylov linear solvers
•  Result in inexact Newton solver
•  Scaled preconditioned solvers: GMRES, Bi-CGStab, TFQMR
•  Only require matrix-vector products
•  Require preconditioner for the Newton matrix, M

§  Two options require serial environments and some pre-defined
structure to the data
•  Direct dense
•  Direct band

§  Jacobian information (matrix or matrix-vector product) can be
supplied by the user or estimated with finite difference quotients

21

We are developing a SUNDIALS interface to
sparse direct solvers

§  Requires serial vector kernel now – only for transfer of RHS
information for Jacobian systems

§  Will generalize to more generic vector interface in the future
§  Matrix information is passed via new SUNDIALS sparse_matrix

structure which utilizes a compressed sparse column format
§  First instantiation is an interface to SuperLU_MT (multi-threaded

version of SuperLU)
§  Will also develop interfaces to KLU (serial) and possibly PARDISO

(threaded)

22

Preconditioning is essential for large
problems as Krylov methods can stagnate

§  Preconditioner P must approximate Newton matrix, yet be
reasonably efficient to evaluate and solve.

§  Typical P (for time-dep. ODE problem) is
§  The user must supply two routines for treatment of P:

•  Setup: evaluate and preprocess P (infrequently)
•  Solve: solve systems Px=b (frequently)

§  User can save and reuse approximation to J, as directed by the
solver

§  Band and block-banded preconditioners are supplied for use with
the supplied vector structure

§  SUNDIALS offers hooks for user-supplied preconditioning
•  Can use hypre or PETSc or …

JJJI ≈− ~,~γ

23

The SUNDIALS vector module is generic

§  Data vector structures can be user-supplied
§  The generic NVECTOR module defines:

•  A content structure (void *)
•  An ops structure – pointers to actual vector operations supplied by

a vector definition
§  Each implementation of NVECTOR defines:

•  Content structure specifying the actual vector data and any
information needed to make new vectors (problem or grid data)

•  Implemented vector operations
•  Routines to clone vectors

§  Note that all parallel communication resides in reduction operations:
dot products, norms, mins, etc.

24

SUNDIALS provides serial and parallel
NVECTOR implementations

§  Use is optional
§  Vectors are laid out as an array of doubles (or floats)
§  Appropriate lengths (local, global) are specified
§  Operations are fast since stride is always 1
§  All operations provided for both serial and MPI parallel cases
§  Can serve as templates for creating a user-supplied vector
§  OpenMP and pThreads vector kernels coming soon. Preliminary

performance tests indicate that 10K length required to see benefit

25

SUNDIALS provides Fortran interfaces

§  CVODE, IDA, and KINSOL
§  Cross-language calls go in both directions:
§  Fortran user code ßà interfaces ßà CVODE/KINSOL/IDA

§  Fortran main à interfaces to solver routines
§  Solver routines à interface to user’s problem-defining routine and

preconditioning routines

§  For portability, all user routines have fixed names
§  Examples are provided

26

SUNDIALS provides Matlab interfaces

§  CVODES, KINSOL, and IDAS
§  The core of each interface is a single MEX file which interfaces to

solver-specific user-callable functions
§  Guiding design philosophy: make interfaces equally familiar to both

SUNDIALS and Matlab users
•  all user-provided functions are Matlab m-files
•  all user-callable functions have the same names as the

corresponding C functions
•  unlike the Matlab ODE solvers, we provide the more flexible

SUNDIALS approach in which the 'Solve' function only returns the
solution at the next requested output time.

§  Includes complete documentation (including through the Matlab help
system) and several examples

27

SUNDIALS code usage is similar across
the suite

§  Have a series of Set/Get routines to set options
§  For CVODE with parallel vector implementation:

 #include “cvode.h”
 #include “cvode_spgmr.h”
 #include “nvector_*.h”

 y = N_VNew_*(n,…);
 cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
 flag = CVodeSet*(…);
 flag = CVodeInit(cvmem,rhs,t0,y,…);
 flag = CVSpgmr(cvmem,…);
 for(tout = …) {
 flag = CVode(cvmem, …,y,…); }

 NV_Destroy(y);
 CVodeFree(&cvmem);

28

SUNDIALS has been used worldwide in applications
from research and industry

§  Power grid modeling (RTE France, ISU)

§  Simulation of clutches and power train parts
(LuK GmbH & Co.)

§  Electrical and heat generation within battery cells
(CD-adapco)

§  3D parallel fusion (SMU, U. York, LLNL)
§  Implicit hydrodynamics in core collapse

supernova (Stony Brook)
§  Dislocation dynamics (LLNL)
§  Sensitivity analysis of chemically reacting flows

(Sandia)

§  Large-scale subsurface flows (CO Mines, LLNL)

§  Optimization in simulation of energy-producing
algae (NREL)

§  Micromagnetic simulations (U. Southampton)

Magnetic reconnection

Core collapse
supernova

Dislocation dynamics

Subsurface flow

More than 3,000
downloads each year

29

Availability

Web site:
Individual codes download
SUNDIALS suite download
User manuals
User group email list

The SUNDIALS Team:
Alan Hindmarsh, Radu Serban,
Dan Reynolds, Carol Woodward,
and Eddy Banks

Open source BSD license
https://computation.llnl.gov/casc/sundials

Publications
https://computation.llnl.gov/casc/sundials/
documentation/documentation.html

